Andrew Ng Part XIII Reinforcement Learning and Control
نویسنده
چکیده
We now begin our study of reinforcement learning and adaptive control. In supervised learning, we saw algorithms that tried to make their outputs mimic the labels y given in the training set. In that setting, the labels gave an unambiguous “right answer” for each of the inputs x. In contrast, for many sequential decision making and control problems, it is very difficult to provide this type of explicit supervision to a learning algorithm. For example, if we have just built a four-legged robot and are trying to program it to walk, then initially we have no idea what the “correct” actions to take are to make it walk, and so do not know how to provide explicit supervision for a learning algorithm to try to mimic. In the reinforcement learning framework, we will instead provide our algorithms only a reward function, which indicates to the learning agent when it is doing well, and when it is doing poorly. In the four-legged walking example, the reward function might give the robot positive rewards for moving forwards, and negative rewards for either moving backwards or falling over. It will then be the learning algorithm’s job to figure out how to choose actions over time so as to obtain large rewards. Reinforcement learning has been successful in applications as diverse as autonomous helicopter flight, robot legged locomotion, cell-phone network routing, marketing strategy selection, factory control, and efficient web-page indexing. Our study of reinforcement learning will begin with a definition of the Markov decision processes (MDP), which provides the formalism in which RL problems are usually posed.
منابع مشابه
Mini/Micro-Grid Adaptive Voltage and Frequency Stability Enhancement Using Q-learning Mechanism
This paper develops an adaptive control method for controlling frequency and voltage of an islanded mini/micro grid (M/µG) using reinforcement learning method. Reinforcement learning (RL) is one of the branches of the machine learning, which is the main solution method of Markov decision process (MDPs). Among the several solution methods of RL, the Q-learning method is used for solving RL in th...
متن کاملAutonomous Helicopter Flight via Reinforcement Learning
Autonomous helicopter flight represents a challenging control problem, with complex, noisy, dynamics. In this paper, we describe a successful application of reinforcement learning to autonomous helicopter flight. We first fit a stochastic, nonlinear model of the helicopter dynamics. We then use the model to learn to hover in place, and to fly a number of maneuvers taken from an RC helicopter co...
متن کاملAutonomous Inverted Helicopter Flight via Reinforcement Learning
Helicopters have highly stochastic, nonlinear, dynamics, and autonomous helicopter flight is widely regarded to be a challenging control problem. As helicopters are highly unstable at low speeds, it is particularly difficult to design controllers for low speed aerobatic maneuvers. In this paper, we describe a successful application of reinforcement learning to designing a controller for sustain...
متن کاملLife-like Agents: Internalizing Local Cues for Reinforcement Learning and Evolution
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008